Approximation of Surfaces by Fairness Bicubic Splines
نویسندگان
چکیده
In this paper we present an approximation method of surfaces by a new type of splines, which we call fairness bicubic splines, from a given Lagrangian data set. An approximating problem of surface is obtained by minimizing a quadratic functional in a parametric space of bicubic splines. The existence and uniqueness of this problem are shown as long as a convergence result of the method is established. We analyze some numerical and graphical examples in order to prove the validity of our method.
منابع مشابه
APPROXIMATION OF 3D-PARAMETRIC FUNCTIONS BY BICUBIC B-SPLINE FUNCTIONS
In this paper we propose a method to approximate a parametric 3 D-function by bicubic B-spline functions
متن کاملApplication of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کاملShape Improvement of Surfaces
An automatic and local fairing algorithm for bicubic Bspline surfaces is proposed. A local fairness criterion selects the knot, where the spline surface has to be faired. A fairing step is than applied, which locally modi es the control net by a constrained least-squares approximation. It consists of increasing locally the smoothness of the surface from C to C. Some extensions of this method ar...
متن کاملRefinable polycube G-splines
Polycube G-splines form a 2-manifold guided by a mesh of quadrilateral faces such that at most six quads meet at each vertex. In particular, this replicates the layout of the quad faces of a polycube. Polycube G-splines are piecewise bicubic and polycube Gspline surfaces are almost everywhere tangent-continuous (G) based on rational linear reparameterization. They can be constructed in two diff...
متن کاملC1 bicubic splines over general T-meshes
The present authors have introduced polynomial splines over T-meshes (PHT-splines) and provided the theories and applications for PHT-splines over hierarchical T-meshes. This paper generalizes PHT-splines to arbitrary topology over general T-meshes with any structures. The general PHT-spline surfaces can be constructed through an unified scheme to interpolate the local geometric information at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 20 شماره
صفحات -
تاریخ انتشار 2004