Approximation of Surfaces by Fairness Bicubic Splines

نویسندگان

  • A. Kouibia
  • Miguel Pasadas
چکیده

In this paper we present an approximation method of surfaces by a new type of splines, which we call fairness bicubic splines, from a given Lagrangian data set. An approximating problem of surface is obtained by minimizing a quadratic functional in a parametric space of bicubic splines. The existence and uniqueness of this problem are shown as long as a convergence result of the method is established. We analyze some numerical and graphical examples in order to prove the validity of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION OF 3D-PARAMETRIC FUNCTIONS BY BICUBIC B-SPLINE FUNCTIONS

In this paper we propose a method to approximate a parametric 3 D-function by bicubic B-spline functions

متن کامل

Application of ‎F‎uzzy Bicubic Splines Interpolation for Solving ‎T‎wo-Dimensional Linear Fuzzy Fredholm Integral ‎Equations‎‎

‎In this paper‎, ‎firstly‎, ‎we review approximation of fuzzy functions‎ ‎by fuzzy bicubic splines interpolation and present a new approach‎ ‎based on the two-dimensional fuzzy splines interpolation and‎ ‎iterative method to approximate the solution of two-dimensional‎ ‎linear fuzzy Fredholm integral equation (2DLFFIE)‎. ‎Also‎, ‎we prove‎ ‎convergence analysis and numerical stability analysis ...

متن کامل

Shape Improvement of Surfaces

An automatic and local fairing algorithm for bicubic Bspline surfaces is proposed. A local fairness criterion selects the knot, where the spline surface has to be faired. A fairing step is than applied, which locally modi es the control net by a constrained least-squares approximation. It consists of increasing locally the smoothness of the surface from C to C. Some extensions of this method ar...

متن کامل

Refinable polycube G-splines

Polycube G-splines form a 2-manifold guided by a mesh of quadrilateral faces such that at most six quads meet at each vertex. In particular, this replicates the layout of the quad faces of a polycube. Polycube G-splines are piecewise bicubic and polycube Gspline surfaces are almost everywhere tangent-continuous (G) based on rational linear reparameterization. They can be constructed in two diff...

متن کامل

C1 bicubic splines over general T-meshes

The present authors have introduced polynomial splines over T-meshes (PHT-splines) and provided the theories and applications for PHT-splines over hierarchical T-meshes. This paper generalizes PHT-splines to arbitrary topology over general T-meshes with any structures. The general PHT-spline surfaces can be constructed through an unified scheme to interpolate the local geometric information at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2004